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1.1 INTRODUCTION

Current computational developments at the Jet Propulsion Laboratory (JPL)
are motivated by the NASA/JPL goal of reducing payload in future space
missions while increasing mission capability through miniaturization of ac-
tive and passive sensors, analytical instruments and communication systems.
Typical system requirements include the detection of particular spectral lines
or bands, associated data processing, and communication of the acquired data
to other systems including the transmission of processed data to Earth via
telecommunicate ion systems. Each of these systems can include various electro-
magnetic components that require analysis and optimization over a complex
design space. Specifications are being pushed by the demands of miniaturiza-
tion as well as improved performance and/or greater fidelity in the itnaging
and telecommunication system. Because an experimental exploration of the
design space is impractical, the use of reliable software design tools executing
on high performance computers is being advanced. These tools use nlod-
els based on the fundamental physics and mathematics of the component or
system being studied, and they strive to have convenient turn-around times
and interfaces that allow effective usage. These tools are then integrated into
an optimization environment, and, using the available memory capacity and
computational speed of high performance parallel platforms, simulation of the
components to be optimized proceeds.
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Electromagnetic components and systems at JPL can be selectively grouped
into classes related to a) instruments and devices used for passive and active
sensing typically in the infrared to optical portions of the spectrum; b) conl-
ponents for filtering and guiding of energy for telecommunication or sensor
applications; and c) antennas used for telescopes in the millimeter wave por-
tion of the spectrum and for telecommunication in the microwave spectrum.
Design efforts in the instrument and device class include fiuitc element nlod-
eling of light coupling structures in quantum well infrared photodetectors
and frequency selective surface integral equation models of near-infrared fil-
ters. Component design includes a wide range of waveguide couplers, horns
and dichroic plates for radio frequency telecommunication and for millimeter
wave sensors. These components are typically modeled using mode match-
ing methods. Antenna design for telescopes and telecommunication systems
involves physical optics analysis of beam-waveguidc systems. Additionally,
recent advances have led to integrated environments where electromagnetic
models arc coupled with structural and thermal models to allow design sim-
ulations of millimeter-wave telescopes that include surface distortions due to
thermal loads on the telescope resulting from deep space trajectories. Finally,
integrated environments call for optimization methods to be inserted into the
design process to assist the designer through multi-parameter design spaces.

To fully carry out the goal of integrated design in an environment that
includes optimization, high computational speeds and memory capacities are
essential. These requirements can most easily be met by using parallel com-
puting platforms. A wide range of electromagnetic codes have been ported
to or developed for parallel machines at JPL. Initial work involved porting
finite difference time domain and integral equation codes to a succession of
distributed memory machines. This effort resulted in an understanding of n]a-
chine performance and data decomposition for electromagnetic models that
scaled with the number of processors and memory available. Additional work
involved the development of finite element methods, including unstructured
mesh decomposition techniques on distributed memory machines. Currently,
parallel adaptive mesh refinement algorithms are being developed to more effi-
ciently solve these problems. The exploration of global optimization methods
has also begun, using parallel genetic algorithms integrated with electronlag-
netic models for grating structures. The parallel platforms that have been
used in these projects have consisted of either one-of-a-kind machines or rel-
atively expensive (though powerful) commercial computers, with the cost or
availability of the parallel machines limiting their usefulness. Recently, a new
class of parallel machines has become available. These machines, known as
Beowulf-class computers, are built from comtnodity-off-the-shelf components
connected together with commodity-off-the-shelf networking hardware and
can achieve sustained performance equal to 10-100 personal computers.

Hyglac is an early Beowulf-class system, currently located at JPL. It con-
sists of 16 nodes interconnected by 100 Base-T Fast Ethernet. Each node
include a single Intel Pentium Pro 200 MHz microprocessor, 128 MBytes of
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DRAM, 2.5 GBytes of IDE disk, and a PCI bus backplane. All nodes have a
video card and a floppy drive, and a single monitor and keyboard are switched
between the nodes. One node also has a CD-ROM drive. Because technology
is evolving extremely quickly and price performance and price feature curves
are also changing very quickly, no two Beowulfs ever look exactly alike. Of
course, this is also because the components are almost always acquired from
a mix of vendors and distributors. The power of de facto standards for in-
teroperability of subsystems has generated an open market that provides a
wealth of choices for customizing ones’ own vefsion of Beowulf, or just max-
imizing cost advantage as prices fluctuate among sources. A Beowulf-class
system runs the Linux [1] operating system freely available over the net or in
low-cost and convenient CD-ROM distributions. In addition, publicly avail-
able parallel processi?lg libraries such as MPI [2] and PVM [3] are used to
harness the power of parallelism’ for large application programs. A small Be-
owulf system such as Hyglac costs less than $20K (as of July 1998) including
all incidental components such as low cost packaging, taking advantage of
appropriate discounts.

This chapter discusses results obtained on two Bcowulf systems. Hyglac
consists of 16 nodes interconnected by a 16 port Bay Networks 281 15/ADV
10013ase-T Fast Ethernet switch. The network switch is built around a 1.6
Gbps switch fabric, thus allowing up to 8 simultaneous 100 Mbps streams
between 8 pairs of nodes. Naegling, a Beowulf system at Caltech has a larger
number (between 64 and 110, depending on the needs of various projects)
of CPUS which are individually the same as those on Hyglac. It also has a
small number of CPUS that contain 300 MHz Pentium II processors. It uses a
network switch that consists of two 80-port Fast Ethernet switches, connected
by a 4 Gbit/s link. Each switch has a backplane bandwidth that should be
sufficient for the full 80 ports.

Previously, a suite of 6 application codes was studied on Hyglac [4]. These
included the three electromagnetic applications that are discussed in this chap-
ter, as well as other science and engineering applications. There was a wide
range in the amount of data being communicated as well as the pattern of
communication across processors, ancl it was determined that the amount of
communication was the most important factor in predicting 13eowulf perfor-
mance for each application. Because the electromagnetic applications ran well
011 Hyglac, two of them were further studied on Naegling [5]. This chapter
reprises some of that study, discusses an addition application, and attempts
to provide more detailed analysis of the three applications.

All of the applications use MPI or PVM for communication between pro-

cessors and run on other platforms. It is useful to examine some measured
data from a few machine that are available at JPL to understand what part
of the code performance is dependent on the code itself, and what part is
dependant on the platform. Tab. 1.1 shows that the Beowulf systems (Hyglac
and NTaegling) have lower peak computation rates that the Cray systems (T3D
and T3E-600), by factors of 1.5 to 3, similar memory sizes, ancl lower com-
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munication rates, by factors of 4 to 18. This implies that communications
performance of the applications will be much worse that computational per-
formance, as compared with the Cray systems, and explains why the amount
of communication versus the amount of computation can bc used to predict
performance on the Beowulf systems.

Table 1.1 Comparison of measured data for four machines. Conmmnica-
tions data is for applicat ion-to-applicat ion communicantion using MPI.

Hyglac Nacgling T3D T3E-600

CPU Speed (MHz) 200 200 150 300 —
Peak Rate (MFLOP/s) 200 200 300 600

MEMORY (Mbyte) 128 128 64 128

Communication
Latency (s) 150 322 35 18

Communication
Throughput (Mbit/s) 66 78 225 1200

1.2 PHYSICAL OPTICS METHOD

The software described in this section [6] is used to design and analyze reflector
antennas and telescope systems. It is based simply on a discrete approxima-
tion of the radiation integral [7]. T}lis calculation replaces the actual reflector
surface with a triangularly faceted representation so that the reflector resenl-
blcs a geodesic dome. The Physical Optics (PO) current is assumed to be

constant in magnitude and phase over each facet so the radiation integral is
reduced to a simple summation. This program has proven to be surprisingly
robust and useful for the analysis of arbitrary reflectors, particularly when
the near-field is desired and the surface derivatives are not known.

The PO code has been developed and used at JPL over the last 30 years.
Systems that were designed and analyzed using this code include the Deep
Space Network (DSN) antennas (used for communication with spacecraft),
and the Microwave Instrument for the Rosetta Orbiter (MIRO) antenna sys-
tem (used to measure surface temperature gradient, outgassiug, and temper-
ature of gasses in the coma of the comet P/54 Wirtanen. )

The PO code (generally) considers a dual-reflector calculation (as can be
seen in Fig. 1.1), which can be thought of as five sequential operations: (1)
creating a mesh with N triangles on the first reflector; (2) computing the cur-
rents on the first reflector using the standard PO approximation; (3) creating
a mesh with M triangles on the second reflector; (4) computing the currents
on the second reflector by utilizing the currents on the first reflector as the
field generator; and (5) computing the required field values by summing the
fields from the currents on the second reflector. The most time-consuming



PHYSICAL OPTICS METHOD V

part, of the calculation is the computation of currents on the second reflector
due to the currents on the first, since for N triangles on the first reflector,
each of the M triangles on the second reflector require an N-element sum over
the first.
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Fig. 1.1 The dual reflector Physical Optics problem, showiog the source, the two
reflectors, and the observation points.

Because of its simplicity, the algorithm has proven to be extremely easy
to adapt to the parallel computing architecture of a modest number of large-

grain computing elements such as are used in Beowulf-class machines. At
this time, the code has been parallelized by distributing the M triangles on
the second reflector over all the processors, and having all processors store
the complete set of currents on the N triangles of the first reflector (though
the computation of these currents is done in parallel.) Also, the calculation of
observed field data has been parallelized. The main steps listed above are thus
all performed in parallel, using simply a small number of global sums, and a
single all-to-all gather. There are also sequential operations involved, such as
1/0 and the triangulation of the reflector surfaces, some of which potentially

could be performed in parallel, but this would require a serious effort, and has
not been done at this time.
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While examining the performance of the 1’0 code, two different compilers
were compared (Gnu g77 and Absoft f77) on the Bcowulf system. One set
of indicative results from these runs are shown in Tab. 1.2 and 1.3. For this
code, the Absoft compiler produced code that was approximately 3070 faster,
and this compiler was used hereafter.

It should be mentioned that the computation of the radiation integral in

two places (in parts II and III, where the definition of the parts is given below)
originally had code of the form:

CEJK = CDEXP(-AJ*J4KR)

where AJ = (O. DO, 1. DO). This can be rewritten as:

CEJK = DCMPLX(DCOS(AKR) , -U31N (AKR) )

On the T3D and T3E, these two changes led to itnproved results (the
run-times were reduced by 35 to 40%.) When these changes were applied
to the Beowulf code using the second compiler, no significant performance
change was observed, leading to the conclusion that one of the optimizat ions
performed by this compiler was similar to this hand-optimization.

Table 1.2 Timing results (in minutes) for PO code, for M=40,000,
N=4,900, using the gnu g77 compiler.

Number of Processors I II III Total

1 0.0850 64.3 1.64 66.0
4 0.0515 16.2 0.431 16.7
16 0.0437 4.18 0.110 4.33

Table 1.3 Timing results (in minutes) for PO code, for M=40,000,
N=4,900, using the Absoft f77 compiler.

Number of Processors I II 111 Total

1 0.0482 46.4 0.932 47.4
4 0.0303 11.6 0.237 11.9
16 0.0308 2.93 0.0652 3.03

The timings for each physical optics run are broken down into three parts.
Part I is input 1/0 and triangulation of the main reflector surface, some of
which is done in parallel. Part 11 is triangulation of the sub-reflector surface,
evaluation of the currents on the sub-reflector, and evaluation of the currents
on the main reflector. As stated previously, the triangulation of the sub-
reflector and evaluation of the currents on those triangles is done redundantly,
while evaluation of the currents on the main reflector is done in parallel. Part
III is evaluation of far fields (parallel) and 1/0 (on only one processor).
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It may be observed from Tab. 1.4, 1.5, and 1.6 that the Beowulf code
performs slightly better than the T3D code, both in terms of absolute perfor-
mance as well as scaling from 1 to 64 processors. (Tab. 1.4 and 1.5 contain re-
sults obtained on Hyglac, and Tab. 1.6 contains results obtained on Naegling.)

This performance difference can be explained by the faster CPU on the Be-
owulf versus the T3D, and the very simple and limited communication not
enabling the T3Ds faster network to influence the results. The scaling differ-
ence is more a function of 1/0, which is both more direct and more simple
on the Bcowulf, and thus faster. By reducing this part of the sequential time,
scaling performance is improved. Another way to look at this is to compare
the results in the three tables. Clearly, scaling is better in the larger test case,
in which 1/0 is a smaller percentage of overall time. It is also clear that the
communications network used on Naegling is behaving as designed for the PO
code running on 4, 16, or 64 processors. Since the majority of communication
is single word global sums, this basically demonstrates that the network has
reasonable latency for this code.

Table 1.4 Timing results (in seconds) for PO code, for M=40,000, N=400.

Number of Processors Beowulf T3D
I II III I H III

——
1 3.19 230 56.0 14.5 249 56.4
4 1.85 57.7. 14.2 8.94 62.5 14.7
16 1.52 14.6 3.86 8.97 16.6 4.13

Table 1.5 Timing results (in minutes) for PO code, for M=40,000,
N=4,900.

hTumberof Processors Beowulf T3D
I II III I H III

1 0.0482 46.4 0.932 0.254 48.7 0.941
4 0.0303 11.6 0.237 0.149 12.2 0.240
16 0.0308 2.93 0.0652 0.138 3.09 0.0749

Tab. 1.7, 1.8, and 1.9 show comparisons of complete run time for the 3 test
problems sizes, for the Beowulf, T3D, and T3E-600 systems. These demon-
strate good performance on the two Beowulf-class machines when compared
with the T3D in terms of overall performance, as well as when compared with
the T3E-600 in terms of price-performance. For all three test cases, the Be-
owulf scaling is better than the T3D scaling, but the results are fairly close
for the largest test case, where the Beowulf being used is Naegling. This can
be explained in large part by 1/0 requirements and timings on the various
machines. The 1/0 is close to constant for all test cases over all machine sizes,
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Table 1.6 Timing results (in minutes) for PO code, for M=160,000,
N=1O,OOO.

Number of Processors Beowulf T31)
1 II III I 11 111

4 0.0950 94.6 0.845 0.546 101 0.965
16 0.0992 23.9 0.794 0.463 25.6 0.355
64 0.0950 6.38 0.541 0.520 6.93 0.116

so in some way it acts as serial code that hurts scaling pcrformanrn. The 1/0
is the fastest on Hyglac, and slowest on the T3D. This is due to the number
of nodes being used on the Beowulf machines, since disks are NFS-n~ounted,
and the more nodes there are, the slower the performance is using NFS. The
T3D forces all 1/0 to travel through its Y-MP front end, which causes it to be
very slow. Scaling on the T3D is generally as good as the small Bcowulf, and
faster than the large Beowulf, again due mostly to 1/0. It may be observed
that the speed-up of the second test case on the T3E is superlinear in going
from 1 to 4 processors. This is probably caused by a change in the ratio of
some of the size of some of the local arrays to the cache size dropping below
1.

Table 1.7 Timing results (in seconds) for complete PO code, for
M=40,000, N=400.

Number of Processors Beowulf(Hyglac) Cray T3D Cray T3E-600

1 289 320 107
4 73.8 86.1 29.6

16 20.0 29.2 8.36 ‘

Table 1.8 Timing results (in minutes) for complete PO code, for
M=40,000, N=4,900.

Number of Processors Beowulf(Hyglac) Cray T3D Cray T3E-600

1 47.4 49.4 18.4
4 11.9 12.6 4.43

16 3.03 3.30 1.14

A hardware monitoring tool was used on the T3E to measure the number
of floating point operations in the M=40,000, N=4,900 test case as 1.32 x 10’1
floating point operations. This gives a rate of 46, 44, and 120 MFLOP/s on
one processor of the Beowulf, T3D, and T3E-600 respectively. These are fairly
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Table 1.9 Timing results (in minutes) for complete PO code, for
M=160,000, N=1O,OOO.

Number of Processors Beowulf(Naegling) Cray T3D Cray T3E-600

4 95.5 102 35.1
16 24.8 26.4 8.84
64 7.02 7.57 2.30

good (23, 29, and 20% of peak, respectively) for RISC processors running
FORTRAN code.

A few tests have been run for small test cases using 300 MHz Pentium II
nodes on ATaegling. They have shown a speedup of 40% for the computation
part of the code over the 200 MHz Pentium Pro nodes.

1.3 FINITE-DIFFERENCE TIME-DOMAIN METHOD

The software described in this section can be used for finding antenna patterns,
electromagnetic scattering from targets, fields within small electronic circuits
and boards, as well as in bioelectromagnetic and photonic simulations. The
method directly produces results in the time domain (transient fields), and by
some fairly simple post-processing (Fourier transforms), can produce results
in the frequency domain at a number of frequencies. Models can include
a variety of materials including inhomogeneous, anisotropic and non-linear
materials.

Finite-differencing was introduced by Yee in the mid 1960s as an efficient
way of solving Maxwell’s titne-dependent curl equations [8]. His method in-
volved sampling a continuous electromagnetic field in a finite region at equidis-
tant points in a spatial lattice, and at equidistant time intervals. Spatial and
time intervals have been chosen to avoid aliasing and to provide stability
for the time-marching system [9]. The propagation of waves from a source,
assumed to be turned on at time t = O, is computed at each of the spatial lat-
tice points by using the finite difference equations to march forward in titne.
This process continues until a desired final state has been reached (often the
steady state). This method has been demonstrated to be accurate for solving
for millions of field unknowns in a relatively efficient manner on sequential
and parallel computers.

This version of the FDTD algorithm uses a uniform Cartesian grid, and
describes the object being studied as a combination of cubic cells and square
faces. More complex versions exist for more accurately modeling curved sur-
faces and thin features, such as wires or composite materials, but these ver-
sions are often based on a Cartesian code, with small modification in regions
where objects do not align themselves with the coarse grid. The vast majority
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of both the operations required and the physical region that is modeled is a
Cartesian grid, and thus, this is the key work to be run in parallel efficiently.

This code is second order in both space and time. Using the satnpling
method chosen by Yee, updating a given field component requires knowledge
of that same component one time step previously, as well as knowledge of
additional field components within a planar region with size one square spatial
cell. A typical update has a cross-shaped stencil, and looks like:

Az(z, y, z, t) = Ca(z, y,z) x A,(z, v,z, t–At)+

/ Br(x, ~+ Ax, z,t - At/2)- \

cb(z, y, 2) x

\

Br(z, u – Az, z,t – At/2)+
13U(x + Ax, y,z, t – At/2)–

J

(1.1)

Bv(z – Ax, y,z, t – At/2)

where A* ancl (l?Z, IIv) are field components (either electric or magnetic), and
C. and cb are simply coefficients that are not functions of time.

The parallelization is done in a very straightforward manner; by decompos-
ing the 3-dimensional physical domain being studied over the processors using
a 2-dimensional decomposition (over z and y). All values of z for a given (z,y)
are located on the same processor. As the update stencil requires data one
cell away from the component being updated in each direction, at the edges of
the decomposed regions, an additional plane of cells from a neighboring region
is needed. As neighboring regions are located on neighboring processors, this
introduces communications. The data that is required to be communicated is
referred to a ghost cell data (or ghost cells). This is illustrated in Fig. 1.2 for
a distribution on a 4 by 4 grid of processors.

Standard Domain
Decomposition

Required Ghost Cells

Fig. 1,2 The relation between the 2-D decomposition of the 3-D grid and the re-
quired ghost cell communication.

All FDTD results that are shown in this section use a fixed size local (per
processor) grid, of 69 x 69 x 76 cells. The overall grid sizes therefore range
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from 69 x 69 x 76 to 552 x 552 x 76 (on 1 to 64 processors). (All Bcowulf
results are from hTaegling. ) This is the largest local problem size that may
be solved on the T3D, and while the other machines have more local memory
and could solve larger problems, it seems more fair to usc the same amount
of local work for these comparisons. In general, the FDTD method requires
10 to 20 points per wavelength for accurate solutions, and a boundary region
of 10 to 20 cells in each direction is also needed. These grid sizes therefore
correspond to scattering targets ranging in size from 5 x 5 x 5 to 53 x 53 x
5 wavelengths.

Both available compilers were used on the Beowulf version of the FI)TD
code. While the results are not tabulated in this paper, the glm g77 compiler
procluced code which ran faster than the code produced by the Absoft f77
compiler. However, the results were just a few percent different, rather than
on the scale of the differences shown by the PO code. All results shown here
are from the gnu g77 compiler.

Tab. 1.10 shows results on various machines and various numbers of proces-
sors in units of CPU seconds per simulated time step. Complete simulations
might require hundreds to hundreds of thousands time steps, and the results
can be scaled accordingly, if complete simulation times are desired. Results
arc shown broken into computation and communication times, where conunu-
nication includes send, receive, and buffer copy times.

Table 1.10 Timing results (in computation - communication CPU seconds
per time step) for FDTD code, for fixed problem size per processor of 69
x 69 x 76 cells.

Number of Processors Beowulf Cray T3D Cray T3E-600
——

1 2.44 -0.0 2.71 -0.0 0.851 -0.0
4 2.46-0.097 2.79-0.026 0.859-0.019
16 2.46-0.21 2.79-0.024 0.859-0.051
64 2.46-0.32 2.74-0.076 0.859-0.052

It is clear that the Beowulf and T3D computation times are comparable,
while the T3E times are about 3 times faster. This is reasonable, given the
relative clock rates (200, 150, and 300 MHz) and peak performances (200,
150, 600 MFLOP/s) of the CPUS. As with the PO code, the T3D attains
the highest fraction of peak performance, the higher clock rate of the Beowulf
gives it a. slightly better performance than the T3D, and the T3E obtains
about the same fraction of peak performance as the Beowulf. As this code
has much more communication that the PO code, there is a clear difference
of an order of magnitude between the communication times on the Beowulf
and the T3D and T3E. However, since this is still a relatively small amount
of communication as compared with the amount of computation, it doesn’t
really effect the overall results.
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It should also be noted that the use of 300 MHz Pentium II nodes produces
a speed-up of 20% for the computation part of the code. This improves the
Beowulf as compared with the Cray platforms. If the delivered performa~lce
of PC-class CPUS continues to increase faster than that of workstation CPUS,
future Beowulf- class machines will become more and more competitive with
vendor-produced parallel computers.

1.4 FINITE-ELEMENT INTEGRAL-EQUATION COUPLED
METHOD

The finite element modeling software (discussed in greater detail in [10], [11])
begins with mesh data constructed on a workstation using a commercially
available CAD meshing package. Because the electromagnetic scattering sim-
ulation is an open region problem (scattered fields exist in all space to infin-
ity), the mesh must be truncated at a surface that maintains accuracy in the
modeled fields, and limits the volume of free space that is meshed. Local, ab-
sorbing boundary conditions can be used to truncate the mesh, but these may
be problematic because they become more accurate as the truncating surface
is removed from the scatterer, requiring greater computational expense, and
they may be problem dependent. The approach used in this section solves
the three-dimensional vector Hehnholtz wave equation, using a coupled finite
element - integral equation method. A specific integral equation (boundary
element) formulation that efficiently and accurately truncates the computa-
tional domain is used. A partitioned system of equations results from the
combination of discretizing the volume in and around the scatterer using the
finite element methocl, and discretizing the surface using the integral equation
method. This system of equations is solved using a two-step solution, com-
bining a sparse iterative solver and a dense factorization method. The matrix
equation assembly, solution, and the calculation of observable quantities are
all computed in parallel, utilizing varying number of processors for each stage
of the calculation.

In this section, one of the three codes that make up the complete finite-
element integral equation electromagnetic analysis package is discussed. This
software package was originally implemented in parallel on the Cray T3D
massively parallel processor using both Cray Adaptive FORTRAN (CRAFT)
compiler constructs to simplify portions of the code that operate on the ir-
regular data to build the matrix problem, and optimized message passing
constructs on portions of the code that operate on regular data and require
optimum machine performance to solve the matrix problem. The complete
discussion of the parallel algorithm is given in [12].

This software is used similarly to the finite-difference software, except it
computes results in the frequency domain, rather than in the time domain.
It is also much more simple to input complex geometric structures into this
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code than into the FDTD code, by using commonly available commercial CAD
pa&ages.

The complete finite-clement code (PHOEBUS) builds a large sparse matrix
and solves it for many right hand sides. The matrix equation is:

KCO H o
(-j o Zo M = o (1.2)
O ZM ZJ J vi

where the symbol t indicates the adjoint of a matrix. Both K and C are sparse,
Z. is tri-diagonal, and ZM and ZJ are banded. In particular the system is
complex, non-symmetric, and 11011-Herlnitian. The sparsity of the system is
shown in Fig. 1.3 for a case with only several hundred finite element unknowns.
For larger, representative cases, the number of finite element unknowns will
grow into hundreds of thousands while the number of columns in C will be
several hundred to several thousand.

The solution to this matrix equation system is completed in two steps.
Initially H in the first equation in (1.2) is written as H = –K- lCM and
substituted into the second equation resulting in

ZK ZO M o
ZM ZJ J = Vi

(1.3)

where ZK = – CtK–l C . This relatively small system is then solved directly
for M and J . By solving the system in two steps, the interior solution is de-
coupled from the incident field Vi, allowing for efficient solutions when many
excitation fields are present as in monostatic radar cross section simulations.
This section only discusses the code used in the first step, as the code used in
the second step is quite straightforward.

The relative numbers of unknowns in H and M (or J ) makes the cal-
culation of K–l C the major computational expense. This operation is the
solution of a system of equations, KX = C , where C is a rectangular matrix
with a potentially large number of columns in the case of electrically large
scatterers. The solution is accomplished by using a symtnetric variant of the
quasi-minimum residual (QMR) iterative algorithm. The resulting overall ma-
trix (1.3) is treated as being dense, and the solution of this second system is
accomplished via a direct dense LU decomposition, since its size is relatively
small.

After the steps of building and distributing the matrix have been completed
on a workstation or one processor of a parallel computer, or multiple proces-
sors of a parallel computer using a data parallel language, the solution of the
matrix for each of the right hand sides is done on the parallel computer using
a code written with a message passing model. This portion of the overall
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Fig. 1.3 Scatter plot graphically showing structure of system of equations. Darkened
spaces indicate non-zero matrix entries.

problem usually requires over 9870 of the complete problem time, and again,
it is the work done by the code considered in this section.

After the matrix is been built, reordered to minimize and equalize row
bandwidth, and distributed into files, these files are read into the message
passing matrix solution code. A block-like iterative scheme (quasi-minimal
residual) is used for the matrix solve, in which a matrix-vector multiply is the
dominant component. Fig. 1.4 illustrates the process performed on a single
processor in the matrix-vector multiply.

Because the matrix has been distributed in a one-dimensional processor
grid, it makes sense to distribute the vectors similarly. The processor doing
each portion of the multiply must acquire portions of the vector from its
neighboring processors, as determined by the column extent of non-zeros in
its portion of the matrix, and then perform the floating point operations of
the multiply. The resultant vector is local to this processor, and no further
communication is required.

Tab. 1.11 (and 1.1 2) show performance data for this QMR code, running on
16 (and 64) processors, and solving a matrix problem formed from a model of
a dielectric cylinder, with radius = 1 cm, height = 10 cm, permittivity = 4.0,
and frequency = 5.0 GHz. The matrix is complex, with 43,791 (and 101,694)
rows having an average of 16 non-zero elements per row. The physical problem
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Fig. 1.4 A representation of the work required in each processor to perform a nlatrix-
vector multiply.

requires solving this matrix for 116 right hand sides. The items in this table
are measurements of the time spent in each part of the matrix solution for all
right hand sides, in CPU seconds. Again, the two Beowulf compilers produced
code that ran with nearly identical speed.

Table 1.11 CPU seconds required for each portion of the matrix solution
for 116 right hand sides, 43,791 edges, using 16 processors.

T31)(shmem) T3D(MPI) Beowulf(MPI)

Mat rix-Vector
Multiply Computation 1290 1290 1502
Matrix-Vector
Multiply Communication 114 272 1720
Other Work 407 415 1211

Total 1800 1980 4433

The computation in the matrix-vector multiply is 55% faster on the Beowulf
CPU than on the T3D CPU. This is due to a combination of increased clock
speed and increased cache size. The communication is about 10 times slower
on the Beowulf compared with the T3D (both using MPI), which is reasonable,
given that this problem requires a large number of messages of both small and
large length, as well as a fairly large number of small-size global sums. With
messages of this size, this code is obtaining as much throughput as is possible
with MPI. All of the global sums are included in the data of the Other Work
row, which also contains a large number of vector-vector operations (including
dot products, norms, scales, copies.) The increase in time of this work from
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Table 1.12 CPU seconds required for each portion of the matrix solution
for 116 right hand sides, 101,694 edges, using 64 processors.

T3D(shmenl) T3D(MPI) 13eowulf(MPI)

h~at rix-\Tector
Multiply Computation 868 919 1034
Matrix-Vector
Multiply Communication 157 254 2059
Other Work 323 323 923

Total 1348 1496 4016

the T3D to the Beowulf can be viewed as a function of decreased memory-
bandwidth, as there is almost no cache reuse in this work.

Overall, this problem is almost 3 times slower on the Beowulf than the
T3D, due to a combination of communication speed, memory-bandwidth, and
amount of communication. As with the previous codes, limited studies have
been performed using 300 MHz Pentium II nodes. They have shown a speedup
of 40% for the computation part of the code. Even with this factor, this code
has decent but not outstanding price-performance, compared with the current
value of a T3D. Faster communication is needed for the Beowulf version of
the code to be truly comparable.

1.5 CONCLUSIONS

The intent of this chapter was to discuss the Beowulf class of computers, fo-
cusing on communication performance, since the computation performance of
the personal computer CPU which forms the building block of the Beowulf is
well understood, and to reach some conclusions about what this performance
implies regarding the feasibility of using this type machine to run electronlag-
netic codes in an institutional science and engineering environment, such as
at JPL.

This chapter has shown that for both parallel calculation of the radiation in-
tegral and parallel finite-difference time-domain calculations, a Beowulf-class
computer provides slight ly better performance that a Cray T3D, at a much
lower cost. The limited amount of communication in the physical optics code
defines it as being in the heart of the regime in which Beowulf-class computing
is appropriate, and thus it makes a good test code for an examination of code
performance and scaling, as well as an examination of compiler options and
other optimization. The FDTD code contains more communication, but the
amount is still fairly small when compared with the amount of computation,
and this code is a good example of domain decomposition PDE solvers. (The
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timing results from this code show trends that are very similar to the results of
other dOInaiIl deCOInpOSitiOIl PDE solvers that have been examined at JPL.)

The physical optics software had the best performance, primarily due to its
almost embarrassingly parallel nature. The limited communications required
by the software led to very good overall performance, due mostly to the CPU
speed of the Beowulf being 33% faster than that of the T3D. This code is
superior in both absolute performance and price-performance on the Beowulf
than on the T3D.

The electromagnetic finite-element software performed similarly to the finite-
difkrence software, in that computation was faster, and communication was
slower. The unique aspect of this code is the large amount of BLAS l-type op-
erations that are performed with data moved from main memory, rather than
from cache. This work is substantially slower than similar work on the T3D.
The reason for this is a combination of poorer memory-CPU throughput, and
lack of optimized BLAS routines for the JPL Beowulf. BLAS routines which
have been optimized for the Pentium Pro CPU under Linux have recently been
released, and they will be examined in the near future. These new routines are
expected to improve the performance on the PHOEBUS code. Overall, even
without this change, this code has acceptable performance on the Beowulf.

An interesting observation is that for Beowulf-class computing, using conl-
modity hardware, the user also must be concerned with commodity software,
including compilers. As compared with the T3D, where Cray supplies and
updates the best compiler it has available, the Beowulf system has many
compilers available from various vendors, and it is not clear that any one al-
ways produces better cocle than the others. In addition to the compilers used
in this paper, at least one other exists (to which the authors did not have
good access.) The various compilers also accept various extensions to FOR-
TRAN, which may make compilation of any given code difficult or impossible
without re-writing on some of it, unless of course the code was written strictly
in standard FORTRAN 77 (or FORTRAN 90), which seems to be extremely
uncc)Innlon.

It is also interesting to notice that the use of hand-optimizations produces
indeterminate results in the final run times, again depending on which com-
piler and which machine is used. Specific compiler optimization flags have not
been discussed in this paper, but the set of flags that was used in each case
were those that produced the fastest running code, and in most but not all
cases, various compiler flag opt ions produced greater variation in run times
that any hand optimization. The implication of this is that the user should
try to be certain there are no gross inefficiencies in the code to be compiled,
and that it is more important to choose the correct compiler and compiler
flags,

Overall, this chapter has examined and validated the choice of a Beowulf-
class computer for the physical optics application (and other similar low-
communication applications), the finite-difference time-domain application
(and other domain decomposition PDE solvers), and the finite-element ap-
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plication (and other similar sparse iterative algorithms). It has examined
performance of these codes in terms of comparison with the Cray T31) and
T3E, scaling, ancl compiler issues, and pointed out some features of which
users of Beowulf-systems should be aware.
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